REALITY CAPTURE EDUCATION SERIES The Unexpected Way to Dominate in Topographic Data Extraction

February 29, 2024

NOTES AND RESOURCES

Why Scripting?

A Technical Perspective

- Unique workflows require unique solutions
- Why wait on official release?
- Build tools custom to individual projects
- Save button clicks on common workflows
- Automation is great but not always 100%
- It allows users to be flexible, fast, and efficient
- Document and examine workflows
 - It's just a set of instructions

Why Scripting?

A Management Perspective

- Human resources make what you have more efficient
- Survey companies are tech companies now
- Survey teams have hidden resources on staff
- R&D is a rock-solid investment
- You're only as fast as your slowest workflow

SEMESTER TWO	UF- Geomatics- Surveying & Mapping	
Select one:		3
COP 2800	Computer Programming Using JAVA (Critical Tracking)	
<u>COP 2271</u> & <u>2271L</u>	Computer Programming for Engineers and Computer Programming for Engineers Laboratory (Critical Tracking)	
COP 3275	Computer Programming Using C (Critical Tracking)	
Approved co	mputer programming course (Critical Tracking)	
MAC 2311	Analytic Geometry and Calculus 1 (Critical Tracking; State Core Gen Ed Mathematics) ³	4

Technical Courses

The remaining 3 units can be selected from the following courses:

 GME 114 - GPS Navigation Units: 3 • GME 145 - Geopositioning Units: 3 GME 152 - Real Property Descriptions Units: 3 **Fresno State** • GME 153 - Boundary Survey Design Units: 3 GME 161 - Data Interface Design Units: 3 Geomatics GME 174 - GIS Applications Units: 3 • GME 175 - GIS Design Units: 3 • GME 190 - Independent Study Units: 1-3 • CSCI 115 - Algorithms and Data Structures Units: 4 CSCI 124 - Introduction to File Processing Units: 3 CSCI 150 - Introduction to Software Engineering Units: 3 CSCI 172 - Computer Graphics Units: 3 CM 180B - Construction Management Capstone 2 Units: 3 CM 122 - Construction Laws Units: 3 CM 124 - Construction Labor Relations Units: 3 • BA 154 - Real Estate Law Units: 3 FIN 180 - Real Estate Principles Units: 3 • FIN 181 - Real Estate Appraisal Units: 3 • MATH 101 - Statistical Methods Units: 4 • MATH 121 - Numerical Analysis I Units: 3 • PHYS 110 - Physical Optics Units: 3

You're only as strong as your weakest workflows

Is Scripting Right for Me?

It Depends...

- Does the tool exist already in the software?
 - Do you want to use it in combination with another tool?
- Do you have defined parameters you use every time?
- How often will this workflow be used in the future?
- Are you testing to see what works for a complex project?
- Do you want to hand a project off?

```
function methodCommon(iReference, iComparison, iCompound)
    var iResult = iReference.BooleanCommon(iComparison).PolyTbl;
    <u>var</u> i = 0;
    var j = 0;
    var tempMesh = SPoly.New();
    var iVolume;
    if(iCompound == true)
        tempMesh = SPoly.CreateCompound(iResult, true).Poly;
        tempMesh.SetName("Compound Common " + iReference.GetName() + " " + iComparison.GetName());
        tempMesh.SetVisibility(true);
        tempMesh.AddToDoc();
        iVolume = tempMesh.GetVolume().Volume;
        print("Volume of " + tempMesh.GetName() + " is " + iVolume.toFixed(3) + " m3.");
        for(i = 0; i < iResult.length; i++)</pre>
            tempMesh = iResult[i];
            tempMesh.SetName("Common " + j + " " + iReference.GetName() + " " + iComparison.GetName
            tempMesh.SetVisibility(true);
            tempMesh.AddToDoc();
            iVolume = tempMesh.GetVolume().Volume;
            print("Volume of " + tempMesh.GetName() + " is " + iVolume.toFixed(3) + " m3.");
function methodAdd(iReference, iComparison, iCompound)
                  iReference.BooleanAdd(iComparison).Pol
```


What is Cyclone 3DR?

A toolbox for analyzing measured 3D data

- Sensor agnostic
- Modular toolset with a powerful 3D viewing engine and useful connectivity
 - Built-in workflows
- Registration, meshing, image manipulation, reporting and extraction tools all in one place
- Well-documented help file with workflow guidance
- Powerful and well-document script API
 - Allows for specific and custom workflows to be built using the tools you find in the software.

Access the Scripting Window and Documentation

Help Files and Sample Scripts

3DR Script Documentation

Github Scripts

Cyclone 3DR fuses Leica JetStream technology for centralised, full-scale point cloud management with automated point cloud analysis and modelling into one simple workflow-based software with tailored tools for the surveying, construction and inspection fields. Where most software will focus on a single workflow to create a specialised deliverable. Cyclone 3DP includes a cape of adaptable tools for inspection and machine that can be leveraged to

Saving a Script to Favorites

Planning for a Successful Script

- 1. Practice the workflow with the built-in tools.
 - a. Write down everything, including the steps and parameters.
- 2. Evaluate how often the workflow will be used.
 - a. If it's only one or two times, just produce the results and get it done.
- 3. Write down in plain language what you want the script to do.
 - a. i.e. "This script will take a group of clouds and color them different colors."
 - b. Then build out the logical framework in plain language using comments.
- 4. Look for the tools in the script documentation that are necessary.
 - a. i.e. the script is working with clouds Classes > class list > SCloud and scan the available tools.
 - b. Read and interpret the tool.
 - a. Write a test script using that tool only to check the results.
- 5. Plug the necessary tools into your plain language framework and add the correct JavaScript syntax to the logic.
- 6. Test and troubleshoot.

Important Terms

Things to know before you get started...

- JavaScript the language that makes web pages interactive
- Variables Where a value is stored for use later in the script
- Arrays A list of things, variables, objects, other lists
- Dot notation Syntax for accessing things on an object, of working down a tree of related tools
- If/else statements A logical control that evaluates if a statement is true, then run some commands
- For loops Logical control that runs the same commands a defined number of times
- Functions A mini-program within a program.
- Objects a way of storing many variables, other objects, functions together in a logical way
- Comments anything with a // at the beginning will be ignored and can be used to make comments and notes

Resources

JavaScript and Script Examples

- JavaScript
 - Official documentation Link
 - Video tutorial Link
 - Text based tutorial Link
- 3DR Script documentation Link
- 3DR Script repository Link

Paint Stripe Script Example

```
// ----- HOW TO USE IT ------
//1.Filter your clouds down to paint stripes only using segment by real color or inspection steps
//2.Explode by distance and clean up and noise
//3.Show only the paint stripe clouds in the view window
var visibleClouds = SCloud.All(1);
if(visibleClouds.length > 0)
   for (let i = 0; i < visibleClouds.length; i++){</pre>
       var cloud = visibleClouds[i];
       var iterator = cloud.GetIterator();
       var itPoint = iterator.GetPt()
       // itPoint.AddToDoc(); //uncomment if you want to show the pick point
       // itPoint.ShowName(true); //uncomment if you want to show the pick point
       var samplingStep = 3;
       var res = cloud.RegionGrowFreePolyline(itPoint, samplingStep);
       if(res.ErrorCode == 0)
           res.Multi.SetName("Paint Stripe");
           res.Multi.SetColors(1.0, 1.0, 1.0);
           res.Multi.AddToDoc();
           res.Multi.MoveToGroup("Paint_Stripe")
else
   print("no clouds displayed");
```


Learn more: https://bit.ly/C3DRscriptingwebinar

Contact us: https://pure-surveying.com/contact/

